Chapter 4 Introduction to Trigonometry

Reading Materials: Croft, A. and R. Davidson Foundation maths. (Harlow: Pearson, 2016) 6th edition. Chapter 22 Introduction to trigonometry.

4.1 Angles

An angle is the measure of separation between two rays that share a common starting point (vertex).

4.1.1 Units of Measurement

  • Degrees (°):

    • 1 flat angle = 180°
    • 1 complete angle = 360°
    • 1° = 60 minutes (′)
    • 1′ = 60 seconds (″)
  • Radians:

  • Defined using the arc of a circle:

    \[\begin{equation} 1 \text{ radian} = \frac{\text{arc length}}{\text{radius}} \end{equation}\]

  • A complete circle = \(2\pi\) radians = 360°

  • Conversion formulas:

    \[\begin{equation} \text{radians} = \text{degrees} \times \frac{\pi}{180}, \quad \text{degrees} = \text{radians} \times \frac{180}{\pi} \end{equation}\]

4.1.2 Type of Angles

Type of Angle Measure (Degrees) Measure (Radians) Notes
Acute angle \(0^\circ < \theta < 90^\circ\) \(0 < \theta < \tfrac{\pi}{2}\) Smaller than a right angle
Right angle \(\theta = 90^\circ\) \(\theta = \tfrac{\pi}{2}\) Quarter turn
Obtuse angle \(90^\circ < \theta < 180^\circ\) \(\tfrac{\pi}{2} < \theta < \pi\) Between right and flat
Flat angle \(\theta = 180^\circ\) \(\theta = \pi\) Straight line
Reflex angle \(180^\circ < \theta < 360^\circ\) \(\pi < \theta < 2\pi\) More than flat, less than full turn
Complete angle \(\theta = 360^\circ\) \(\theta = 2\pi\) Same as \(0^\circ\) due to periodicity

4.2 Triangles

Definition

  • A triangle is a polygon with three sides and three angles.

  • The sum of the interior angles of a triangle is always:

    \[\begin{equation} 180^\circ \; \; \text{(or } \pi \text{ radians)} \end{equation}\]

Classification by Sides

  • Equilateral: 3 equal sides, 3 equal angles (each 60°).
  • Isosceles: 2 equal sides, 2 equal angles.
  • Scalene: no equal sides, no equal angles.

Classification by Angles

  • Acute triangle: all angles < 90°.
  • Right triangle: one angle = 90°.
  • Obtuse triangle: one angle > 90°.

Exterior Angle Theorem

  • An exterior angle of a triangle equals the sum of the two opposite interior angles:

    \[\begin{equation} \text{Exterior angle} = \text{Angle}_1 + \text{Angle}_2 \end{equation}\]

Triangle Inequality

For any triangle with sides \(a, b, c\):

\[\begin{equation} a + b > c, \quad b + c > a, \quad c + a > b \end{equation}\]

  • The sum of the lengths of any two sides must be greater than the third side.
  • This condition ensures the three sides can actually form a triangle.

Special case:

  • If \(a + b = c\), the points are collinear (they lie on a straight line), so no triangle is formed.

4.2.1 Special Triangles

1. Equilateral Triangle

  • All sides are equal: \(a = b = c\)

  • All angles are equal: \(60^\circ\) each

  • Height formula:

    \[\begin{equation} h = \frac{\sqrt{3}}{2}a \end{equation}\]

  • Area:

    \[\begin{equation} A = \frac{\sqrt{3}}{4}a^2 \end{equation}\]

2. Isosceles Triangle

  • Two equal sides: \(a = b \neq c\)

  • Two equal base angles.

  • If base = \(c\), height from apex bisects base:

    \[\begin{equation} h = \sqrt{a^2 - \left(\frac{c}{2}\right)^2} \end{equation}\]

3. Right Triangle

  • One angle = \(90^\circ\).

  • Sides:

    • Hypotenuse = longest side (opposite right angle).
    • Legs = other two sides.
  • Area:

    \[\begin{equation} A = \frac{1}{2} \times \text{(base)} \times \text{(height)} \end{equation}\]

  • Foundation for Pythagoras’ Theorem (next section).

4.2.2 Similar Triangles

Definition

Two triangles are similar if they have the same shape but not necessarily the same size.

  • Corresponding angles are equal.
  • Corresponding sides are proportional.

Notation

\[\begin{equation} \triangle ABC \sim \triangle DEF \end{equation}\]

means \(\angle A = \angle D, \; \angle B = \angle E, \; \angle C = \angle F\) and

\[\begin{equation} \frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} \end{equation}\]

Conditions for Similarity

Two triangles are similar if:

  1. AA (Angle-Angle): Two pairs of angles are equal.
  2. SSS (Side-Side-Side): Ratios of all three pairs of sides are equal.
  3. SAS (Side-Angle-Side): Ratios of two sides are equal and the included angle is equal.

Property

  • Ratio of areas of two similar triangles equals the square of the ratio of corresponding sides:

\[\begin{equation} \frac{\text{Area}_1}{\text{Area}_2} = \left(\frac{\text{Side}_1}{\text{Side}_2}\right)^2 \end{equation}\]

4.2.3 Pythagoras’ Theorem

Statement

In a right-angled triangle:

\[\begin{equation} a^2 + b^2 = c^2 \end{equation}\]

  • \(a, b\) = legs (sides adjacent to right angle)
  • \(c\) = hypotenuse (side opposite the right angle, longest side)

Pythagorean Triples

  • Integer solutions to \(a^2 + b^2 = c^2\).

  • Common examples:

    • (3, 4, 5)
    • (5, 12, 13)
    • (8, 15, 17)
  • Multiples also work (e.g., 6, 8, 10).

4.3 Trigonometric Relations

4.3.1 Basic Ratios (Right Triangles)

For a right triangle with:

  • Angle \(\theta\)
  • Opposite side = \(O\)
  • Adjacent side = \(A\)
  • Hypotenuse = \(H\)

\[\begin{equation} \sin \theta = \frac{O}{H}, \quad \cos \theta = \frac{A}{H}, \quad \tan \theta = \frac{O}{A} \end{equation}\]

Mnemonic: SOH-CAH-TOA

  • Sine = Opposite / Hypotenuse
  • Cosine = Adjacent / Hypotenuse
  • Tangent = Opposite / Adjacent

4.3.2 Law of Sines

\[\begin{equation} \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \end{equation}\]

Proof:

Construct the altitude from \(B\).

From the definition of sine:

\[\begin{equation} \sin A = \frac{h}{c}, \quad \sin C = \frac{h}{a} \end{equation}\]

Thus:

\[\begin{equation} h = c \sin A, \quad h = a \sin C \end{equation}\]

This gives:

\[\begin{equation} c \sin A = a \sin C \end{equation}\]

So:

\[\begin{equation} \frac{a}{\sin A} = \frac{c}{\sin C} \end{equation}\]

Similarly, constructing the altitude from \(A\) gives:

\[\begin{equation} \frac{b}{\sin B} = \frac{c}{\sin C} \end{equation}\]

4.3.3 Law of Cosines

\[\begin{equation} c^2 = a^2 + b^2 - 2ab\cos C \end{equation}\]

Proof:

Using the same triangle from previous proof, let:

\[\begin{equation} e = \text{CD} \end{equation}\]

\[\begin{equation} f = \text{AD} \end{equation}\]

We have that △CDB and △ADB are right triangles.

Hence:

\[\begin{align} c^2 &= h^2+f^2\\ a^2 &= h^2+e^2\\ b^2 &= (e+f)^2\\ &= e^2+f^2+2ef\\ e &= A \cos C \end{align}\]

Then:

\[\begin{align} c^2 &= h^2+f^2\\ &= a^2-e^2+f^2\\ &= a^2-e^2+f^2+2e^2-2e^2+2ef-2ef\\ &= a^2+\underbrace{(e^2+f^2+2ef)}_{b^2}-2e\underbrace{(e+f)}_b\\ &= a^2 + b^2 - 2ab\cos C \end{align}\]

4.3.4 Special Angles (Summary Table)

Angle \(\sin \theta\) \(\cos \theta\) \(\tan \theta\)
\(0^\circ\) 0 1 0
\(30^\circ\) \(\tfrac{1}{2}\) \(\tfrac{\sqrt{3}}{2}\) \(\tfrac{1}{\sqrt{3}}\)
\(45^\circ\) \(\tfrac{1}{\sqrt{2}}\) \(\tfrac{1}{\sqrt{2}}\) 1
\(60^\circ\) \(\tfrac{\sqrt{3}}{2}\) \(\tfrac{1}{2}\) \(\sqrt{3}\)
\(90^\circ\) 1 0 undefined (\(\infty\))